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Abstract

To avoid the complicated computation of ray trajectories, a finite element formulation is developed to solve the radi-

ative transfer problem in a one-dimensional absorbing–emitting–scattering semitransparent slab with variable spatial

refractive index. A problem of radiative equilibrium is taken as an example to verify this finite element formulation.

The predicted temperature distributions are determined by the proposed method and compared with the data in refer-

ences. The results show that the finite element formulation presented in this paper has good accuracy in solving the

radiative transfer in one-dimensional absorbing–emitting–scattering semitransparent medium with variable spatial

refractive index.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Radiative heat transfer in semitransparent medium

with variable spatial refractive index is of great interest

in thermo-optical systems, and has evoked the wide

interest of many researchers. As early as 1993, Siegel

and Spuckler [1] analyzed the variable refractive index

effects on radiation in semitransparent scattering multi-

layered regions, and pointed out that refractive indices

of semitransparent sublayers inside a composite could

have considerable effects on the temperature distribution

and radiative flux fields. Due to the variable spatial

refractive index, the ray goes along a curved path deter-

mined by the Fermat principle. Ray-tracing is the main
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difficulty for the solution of radiative transfer in the

medium with variable spatial refractive index. Recently,

a lot of ray-tracing techniques have been presented to

solve the radiative transfer in semitransparent medium

with graded refractive index. Ben Abdallah and Le

Dez [2–5] developed and used a curved ray-tracing tech-

nique to analyze the radiative heat transfer in absorb-

ing–emitting semitransparent medium with variable

spatial refractive index. Huang et al. [6,7] and Xia

et al. [8] presented a combined curved ray-tracing and

pseudo-source adding method for radiative heat transfer

in one-dimensional semitransparent medium with

graded refractive index. Liu [9] developed a discrete

curved ray-tracing method, in which the curved ray tra-

jectory is locally treated as a straight line. Based on the

discrete curved ray-tracing technique, Liu [10] developed

a Monte Carlo discrete curved ray-tracing method, in

which the Monte Carlo method is combined with the
ed.
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Nomenclature

b asymmetry factor of scattering

F in-scattering term

I radiative intensity

Ib blackbody radiative intensity

L thickness of slab

N total number of unknown radiative intensity

n refractive index

s abscissa on the ray trajectory

T temperature

x axis coordinate

Greek symbols

c parameter defined in Eq. (6)

e emissivity

ja absorption coefficient

js scattering coefficient

l direction cosine

r Stefan–Boltzmann constant

sL optical thickness of slab, sL = (ja + js)L
u shape function

U scattering phase function

W dimensionless radiative heat flux

x single scattering albedo, x = js/(ja + js)

Subscripts

0 at position of x = 0

L at position of x = L

i, j, l for the node i, j, or l
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discrete curved ray-tracing method. Because the ray goes

along a curved path determined by the Fermat principle,

the ray tracing is very difficult and complex in the med-

ium with variable spatial refractive index. Therefore, all

of these methods stated above need the complicated

computation of ray trajectories.

To avoid the complicated computation of ray trajec-

tories, a method not based on curved ray-tracing needs

to be developed. In this paper, we develop a finite ele-

ment formulation of radiative transfer in one-dimen-

sional absorbing–emitting–scattering semitransparent

slab with variable spatial refractive index. A problem

of radiative equilibrium is taken as an example to verify

this finite element formulation.
2. Mathematical formulation

As shown in Fig. 1, we consider one–dimensional

semitransparent gray absorbing–emitting–scattering

slab with thickness L. The boundaries are opaque, dif-

fuse and gray walls. The emissivities of boundary walls

are e0 and eL, and the temperatures of boundary walls

are imposed as T0 and TL, respectively. The absorption

coefficient ja and scattering coefficient js are uniform

over the slab, but the refractive index n of medium varies
θ
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Fig. 1. Physical geometry of slab.
with the axis coordinate x. The radiative transfer equa-

tion at steady state in an absorbing–emitting–scattering

medium with spatial variable optical constants is given

by

n2
d

ds
I
n2

� �
þ ðja þ jsÞI

¼ n2jaIb þ
js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0 ð1aÞ

with boundary conditions

Ið0; lÞ ¼ e0n20
rT 4

0

p
þ 2ð1� e0Þ

Z 0

�1

Ið0; l0Þl0dl0; l P 0;

ð1bÞ

IðL; lÞ ¼ eLn2L
rT 4

L

p
þ 2ð1� eLÞ

Z 1

0

IðL; l0Þl0dl0; l 6 0;

ð1cÞ

where I(x,l) is the radiative intensity, s is the abscissa on
the ray trajectory and determined by ray equation, r is

Stefan–Boltzmann constant, l = cosh is the direction co-

sine of the local tangent vector of ray trajectory.

In order to use the finite element method, Eq. (1a)

needs to be transformed and expressed in the space of

x � l. When moving along one given path, the stream-

ing operator d/ds can be split into [11]

d

ds
¼ o

ox
� dx

ds
þ o

ol
� dl

ds
: ð2Þ

From Snell�s law

d

ds
ðn sin hÞ ¼ 0; ð3Þ

it comes out that

l
d

dx
ðn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
Þ ¼ 0; ð4aÞ
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and

dl
ds

¼ l
dl
dx

¼ ½1� l2	 d ln n
dx

: ð4bÞ

Finally, by using Eqs. (2) and (4) the radiative trans-

fer equation can be rewritten as

l
oI
ox

þ cð1� l2Þ oI
ol

þ ðja þ js � 2clÞI

¼ n2jaIb þ
js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0; ð5Þ

where

c ¼ d ln n
dx

: ð6Þ

It is noted that radiative intensity I is the function of

x and l. In the two-dimensional space of x � l, the do-
main of interest is subdivided into many elements. By

using the shape function, an approximate solution of I

can be assumed in the form

I ¼
X
l

Ilul; ð7Þ

where the Il is the values at the node l, and ul is the

shape function. The weighted residuals approach is used

to spatially discretize the radiative transfer equations

[Eq. (5)]. Taking shape function ul as the weight func-

tion, Eq. (5) is weighted over the domain of interest

and its integrated residuals are set to zero

Rl ¼
Z
V

l
oI
ox

þ cð1� l2Þ oI
ol

þ ðja þ js � 2clÞI
�

�n2jaIb �
js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0
�
uldV ¼ 0;

l ¼ 1; 2; 
 
 
 ;N ; ð8Þ

where N is the total number of unknown radiative

intensities.

In this paper, the linear triangular element is used.

Each element has three nodes numbered anticlockwise

as i, j and k. The weighted residuals for the element e

can be written as

Re
l ¼ Ke

liI i þ Ke
ljI j þ Ke

lkIk � f e
l ; l ¼ i; j; k; ð9aÞ

where

Ke
lm ¼

Z
V e

l
oum

ox
þ cð1� l2Þ oum

ol
þ ðja þ js � 2clÞum

� �
� uldV ; l;m ¼ i; j; k; ð9bÞ

f e
l ¼

Z
V e

n2jaIb þ
js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0
� �

uldV ;

l ¼ i; j; k: ð9cÞ
In Eq. (9c), the integration of in-scattering term is

evaluated approximately by the last iterated values of

radiative intensity, and can be expressed as

Ge
l ¼

Z
V e

js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0
� �

uldV

¼
Z
V e

½F ðxi; liÞui þ F ðxj; ljÞuj þ F ðxk ; lkÞuk 	uldV ;

l ¼ i; j; k; ð10Þ

where

F ðx; lÞ ¼ js

2

Z 1

�1

Iðx; l0ÞUðl; l0Þdl0: ð11Þ

In order to compute the values of Eqs. (9) and (10),

the typical 7-point numerical quadrature formula [12]

in triangular elements is used. Finally, by summing the

contributions from each element, the matrix system of

integrated residual equation (eq. (8)) can be symbolically

written as

KijIj ¼ fi; i; j ¼ 1; 2; 
 
 
 ;N : ð12Þ

Because the in-scattering term in Eq. (11) is com-

puted approximately by using the last iterated values

of radiative intensity, global iterations are necessary to

include the in-scattering term and boundary conditions.

From the equation derivation shown above, it can be

seen that the complicated computation of ray trajecto-

ries is avoided for the finite element simulation of radi-

ative transfer in one-dimensional absorbing–emitting–

scattering semitransparent slab with variable spatial

refractive index.
3. Results and discussions

To verify this finite element formulation presented

above for radiative transfer in the medium with variable

spatial refractive index, a problem of radiative equilib-

rium is taken as an example. As shown in Fig. 1, the

temperatures of boundary walls are imposed as

T0 = 1000 K and TL = 1500 K, respectively. Three par-

ticular test cases are examined. Those particular test

cases are selected because exact, or at lease very precise,

solutions of the radiative transfer equation exist for

comparison with the finite element solution. A computer

code based on the preceding calculation procedure was

written. Grid refinement studies were also performed

for the physical model to ensure that the essential phys-

ics are independent of grid size. For the following

numerical study, the regions of x 2 [0,L] and

l 2 [�1,1] are divided uniformly into 40 parts, respec-

tively, and then the two-dimensional domain of compu-

tation is subdivided into 3200 triangular elements. At

radiative equilibrium, the temperature distribution

within the medium is determined by



Table 1

Dimensionless radiative heat flux W in the case of n(x) = 1 + 2x/

L and e0 = eL = 1.0

sL W ¼ 2p
R 1

�1 Ildl=n20rðT 4
0 � T 4

LÞ
RT [11] MCDCRT [10] FEM

0.1 0.9872 0.9882 0.9831

1.0 0.8720 0.8753 0.8701
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T ðxÞ ¼ p
2rn2ðxÞ

X40
m¼1

Iðx; lmÞDl

" #0:25

: ð13Þ

Because the blackbody radiative intensity in Eq. (9c)

depends on the temperature of medium, the global iter-

ations are necessary. The maximum relative error 10�5

of the medium temperature is taken as the stopping cri-

terion of iteration. The detailed procedure is as follows:

Step 1: Set the initial values of medium temperature.

Step 2: Solve Eq. (12) for the radiative intensity.

Step 3: Calculate the temperature distribution within

the medium.

Step 4: Terminate the iteration process if the specified

stopping criterion is satisfied. Otherwise, go to

step 2.

3.1. Case 1: Linear refractive index and non-scattering

medium

The finite element method is applied to a one-dimen-

sional slab bounded by black walls. The refractive index

of the medium within the slab varies linearly with the

axis coordinate as n(x) = 1.2 + 0.6x/L. The medium

within the slab is non-scattering. This case has also been

used as a test case by Huang et al. [7] using the pseudo

source adding method. The temperature distributions

within the medium are presented in Fig. 2 for three val-

ues of slab optical thicknesses, namely sL = 0.01,

sL = 1.0 and sL = 3.0. As shown in Fig. 2, the FEM re-

sults are in good agreement with the results obtained

by using the pseudo source adding method. In case 1,
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Fig. 2. Temperature distributions in the cases of n(x) = 1.2 +

0.6x/L, e0 = eL = 1 and x = 0.
the number of iteration is less than six, and the time re-

quired for computation is less than 20 min on a personal

computer with Intel Pentium Pro 450 MHz processor.

Table 1 shows the dimensionless radiative heat flux in

the case of n(x) = 1 + 2x/L and e0 = eL = 1.0. By com-

parison with the results of the ray-tracing method

(RT) developed by Lemonnier et al. [11] and Monte

Carlo discrete curved ray-tracing method (MCDCRT)

[10], it can be seen that FEM has good accuracy in solv-

ing the radiative transfer in one-dimensional semitrans-

parent slab with variable spatial refractive index.

3.2. Case 2: Sinusoidal refractive index and non-scattering

medium

In this case, nonlinear refractive index is studied.

The refractive index of medium within the slab varies

sinusoidaly with the axis coordinate as n(x) =

1.8 � 0.6sin(px/L). The medium within the slab is non-

scattering and the slab optical thickness is sL = 1.0.

Fig. 3 shows the temperature distributions within the

medium for two different conditions of wall emissivity,

namely e0 = eL = 1 and e0 = eL = 0.7. As shown in Fig.

3, the FEM results are in good agreement with the
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Fig. 3. Temperature distributions in the cases of n(x) = 1.8 �
0.6sin(px/L), sL = 1 and x = 0.
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results obtained by using the pseudo source adding

method [13]. The maximum relative error is less than 2%.

3.3. Case 3: Linear refractive index and anisotropically

scattering medium

In this case, an anisotropically scattering medium is

studied. The slab is bounded by black walls and the slab

optical thickness is sL = 1.0. The refractive index of

medium within the slab varies linearly with the axis

coordinate as n(x) = 1.2 + 0.6x/L. The single scattering

albedo is x = 0.8, and the scattering phase function is as-

sumed to be linear as U = 1 + bll 0. Liu et al. [14] studied

this case by Monte Carlo curved ray-tracing method.

The temperature distributions within the slab are shown

in Fig. 4 for two different values of asymmetry factor,

namely b = 1 and b = �1, and compared to the results

obtained from Monte Carlo curved ray-tracing method.

The FEM results agree with those of Monte Carlo

curved ray-tracing method very well. The maximum rel-

ative error is less than 3%.
4. Conclusions

To avoid the complicated computation of ray trajec-

tories, a finite element formulation is developed to solve

the radiative transfer in one-dimensional absorbing–

emitting–scattering semitransparent slab with variable

spatial refractive index. A problem of radiative equilib-

rium is taken as an example to verify this finite element

formulation. The predicted temperature distributions

are determined by the finite element method and com-

pared with the data in references. The results show that

the finite element formulation presented in this paper

has good accuracy in solving the radiative transfer in
one-dimensional absorbing–emitting–scattering semi-

transparent medium with variable spatial refractive

index.
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